latqcdtools.base.cleanData
clipRange(array, col=None, minVal=-inf, maxVal=inf) -> numpy.ndarray
Throw out any elements of array that lie outside the interval (minVal,maxVal). Note this
renders arrays finite.
deleteCol(array, col) -> numpy.ndarray
Remove a column of a 2d np.ndarray.
Args:
array (np.ndarray)
col (int): Remove this column
Returns:
np.ndarray: array with row removed
deleteRow(array, row) -> numpy.ndarray
Remove a row of a 2d np.ndarray.
Args:
array (np.ndarray)
row (int): Remove this row
Returns:
np.ndarray: array with row removed
excludeAtCol(table, col=None, atVal=inf) -> numpy.ndarray
Return everything except those rows of table where col has exactly the value atVal.
intersectAtCol(table1, table2, col)
Return only those rows of table1 and table2 that have identical elements in column col.
restrictAtCol(table, col, atVal, rtol=None, atol=None) -> numpy.ndarray
Return only those rows of table where col has exactly the value atVal.
spliceAtCol(table1, table2, col, atVal) -> numpy.ndarray
Assuming two tables table1 and table2 have common values in column col, create a new
table, where table1 has corresponding entries less than atVal in col, and table 2
has corresponding entries greater than atVal.