latqcdtools.math.math

RMS(data) -> float

Root-mean-square of data

Args:
    data (np.ndarray)

Returns:
    float: RMS of data 

checkSquare(mat)

Make sure mat is a square np.ndarray object. 

Args:
    mat (np.ndarray)

fallFactorial(n, m) -> float

Falling factorial n fall to m. 

invert(mat, method='scipy', svdcut=1e-12) -> numpy.ndarray

Invert matrix.

Args:
    mat (np.ndarray): to-be-inverted matrix 
    method (str): algorithm for inverting the matrix
    
Returns:
    np.ndarray: mat^{-1} 

isPositiveSemidefinite(mat) -> bool

isSymmetric(mat) -> bool

logDet(mat) -> float

Logarithm of determinant. 

normalize(arr)

quadrature(data) -> float

Add data in quadrature

Args:
    data (np.ndarray)

Returns:
    float: data added in quadrature 

regulate(mat, svdcut=1e-12) -> numpy.ndarray

If a matrix's singular values are too small, it will be ill-conditioned,
making it difficult to invert and hence reducing numerical stability. This method
extracts its singular values using SVD, then doctors the singular values to reduce
the condition number. In the context of applying an SVD cut to a covariance 
matrix, see e.g. Appendix D of 10.1103/PhysRevD.100.094508.

Args:
    mat (np.ndarray)
    svdcut (float, optional): condition number threshold. Defaults to 1e-12.

Returns:
    np.ndarray: regulated matrix 

rel_check(a, b, prec=1e-06, abs_prec=1e-14) -> bool

Check whether a and b are equal. a and b can be array-like, float-like, or complexes. If a
and b are array-like, we check that they are element-wise equal within the tolerance. 

Args:
    a (obj)
    b (obj)
    prec (float, optional): Relative precision. Defaults to 1e-6.
    abs_prec (float, optional): Absolute precision. Defaults to 1e-14.

Returns:
    bool: True if a and b are equal. 

riseFactorial(n, m) -> float

Rising factorial n rise to m.