latqcdtools.math.math
RMS(data) -> float
Root-mean-square of data
Args:
data (np.ndarray)
Returns:
float: RMS of data
checkSquare(mat)
Make sure mat is a square np.ndarray object.
Args:
mat (np.ndarray)
fallFactorial(n, m) -> float
Falling factorial n fall to m.
invert(mat, method='scipy', svdcut=1e-12) -> numpy.ndarray
Invert matrix.
Args:
mat (np.ndarray): to-be-inverted matrix
method (str): algorithm for inverting the matrix
Returns:
np.ndarray: mat^{-1}
isPositiveSemidefinite(mat) -> bool
isSymmetric(mat) -> bool
logDet(mat) -> float
Logarithm of determinant.
normalize(arr)
quadrature(data) -> float
Add data in quadrature
Args:
data (np.ndarray)
Returns:
float: data added in quadrature
regulate(mat, svdcut=1e-12) -> numpy.ndarray
If a matrix's singular values are too small, it will be ill-conditioned,
making it difficult to invert and hence reducing numerical stability. This method
extracts its singular values using SVD, then doctors the singular values to reduce
the condition number. In the context of applying an SVD cut to a covariance
matrix, see e.g. Appendix D of 10.1103/PhysRevD.100.094508.
Args:
mat (np.ndarray)
svdcut (float, optional): condition number threshold. Defaults to 1e-12.
Returns:
np.ndarray: regulated matrix
rel_check(a, b, prec=1e-06, abs_prec=1e-14) -> bool
Check whether a and b are equal. a and b can be array-like, float-like, or complexes. If a
and b are array-like, we check that they are element-wise equal within the tolerance.
Args:
a (obj)
b (obj)
prec (float, optional): Relative precision. Defaults to 1e-6.
abs_prec (float, optional): Absolute precision. Defaults to 1e-14.
Returns:
bool: True if a and b are equal.
riseFactorial(n, m) -> float
Rising factorial n rise to m.