latqcdtools.math.spline
_even_knots(xdata, nknots)
Return a list of nknots evenly spaced knots.
_random_knots(xdata, nknots, randomization_factor=1, SEED=None)
Return a list of nknots randomly spaced knots.
getSpline(xdata, ydata, num_knots=None, edata=None, order=3, rand=False, fixedKnots=None, getAICc=False, natural=False)
This is a wrapper that calls SciPy spline interpolation methods, depending on your needs. Generally
this uses scipy.interpolate.splrep, which uses B-splines. If natural=True and edata=None, it will
use scipy.interpolate.CubicSpline to solve. If natural=True and edata are provided, it will do a
smoothing spline that attempts to force no curvature at the endpoints, based on the penultimate points.
Args:
xdata (array-like)
ydata (array-like)
num_knots (int):
The number of knots.
edata (array-like, optional):
Error data. Defaults to None.
order (int, optional):
Order of the spline. Defaults to 3.
rand (bool, optional):
Use randomly placed knots? Defaults to False.
fixedKnots (array-like, optional):
List of user-specified knots. Defaults to None.
getAICc (bool, optional):
Return corrected Aikake information criterion? Defaults to False.
natural (bool, optional):
Try a natural (no change in slope at the endpoints) cubic spline. Defaults to False.
Returns:
callable spline object
AICc (optionally)
getSplineErr(xdata, xspline, ydata, ydatae, num_knots=None, order=3, rand=False, fixedKnots=None, natural=False)
Use getSpline to smooth mean and error bars. Create a spline-smooth band from that.
TBSpline(xdata, ydata, edata=None, knots=None, order=3, naturalLike=False)
A class that prepares a splrep and wraps it with splev.