latqcdtools.base.cleanData ============= `clipRange(array, col=None, minVal=-inf, maxVal=inf) -> numpy.ndarray` Throw out any elements of array that lie outside the interval (minVal,maxVal). Note this renders arrays finite. `deleteCol(array, col) -> numpy.ndarray` Remove a column of a 2d np.ndarray. Args: array (np.ndarray) col (int): Remove this column Returns: np.ndarray: array with row removed `deleteRow(array, row) -> numpy.ndarray` Remove a row of a 2d np.ndarray. Args: array (np.ndarray) row (int): Remove this row Returns: np.ndarray: array with row removed `excludeAtCol(table, col=None, atVal=inf) -> numpy.ndarray` Return everything except those rows of table where col has exactly the value atVal. `intersectAtCol(table1, table2, col)` Return only those rows of table1 and table2 that have identical elements in column col. `restrictAtCol(table, col, atVal, rtol=None, atol=None) -> numpy.ndarray` Return only those rows of table where col has exactly the value atVal. `spliceAtCol(table1, table2, col, atVal) -> numpy.ndarray` Assuming two tables table1 and table2 have common values in column col, create a new table, where table1 has corresponding entries less than atVal in col, and table 2 has corresponding entries greater than atVal.