latqcdtools.math.num_int
integrateData(xdata, ydata, method='trapezoid')
Wrapper to integrate data.
Args:
xdata (array-like)
ydata (array-like)
method (str, optional): Integration method. Defaults to 'trapezoid'. Possibilities include:
> 'simpson' : Simpson rule.
> 'trapezoid' : Trapezoidal rule.
Returns:
float: Area under ydata.
integrateFunction(func, a, b, method='persistent', args=(), stepsize=None, limit=1000, epsrel=1.49e-08, epsabs=1.49e-08)
Wrapper to integrate functions. Allows to conveniently adjust the stepsize, and can vectorize scipy.quad,
which otherwise does not like to handle numpy arrays.
Args:
func (func): Integrand.
a (float): Lower integration limit.
b (float): Upper integration limit.
method (str,optional): Integration method. Defaults to 'persistent_quad_trap'. Possibilities are:
> 'persistent' : Try various methods until something works.
> 'quad' : Gaussian quadrature.
> 'trapezoid' : Trapezoidal rule.
args (tuple, optional): Arguments to func. Defaults to ().
stepsize (float, optional): _description_. Defaults to None.
limit (int, optional): Upper bound on number of subintervals used in the adaptive algorithm. Defaults to 1000.
epsrel (float, optional): Relative error tolerance. Defaults to 1.49e-8.
epsabs (float, optional): Absolute error tolerance. Defaults to 1.49e-8.
Returns:
float: Integral of func from a to b.
solveIVP(dydt, t0, tf, y0, method='RK45', args=(), epsrel=1.49e-08, epsabs=1.49e-08) -> numpy.ndarray
Wrapper to solve an initial value problem of the form
dy/dt = dydt(t, y)
y(t0) = y0
Args:
dydt (func): RHS of IVP. Must have signature dydt(t,y).
t0 (float): initial time
tf (float): final time
y0 (array-like): y(t0)
method (str, optional): Integration method. Defaults to 'RK45'.
args (tuple, optional): Arguments to dydt. Defaults to ().
epsrel (float, optional): Relative error tolerance. Defaults to 1.49e-8.
epsabs (float, optional): Absolute error tolerance. Defaults to 1.49e-8.
Returns:
array-like: y(tf)