latqcdtools.physics.referenceScales ============= ```Python _betaRangeWarn(beta, beta_range): ''' Many of these ansätze a(beta) have coefficients that were determined by performing a fit within a certain beta range. This warning flashes whenever you are using information outside of that range, where the ansatz is less likely be to reliable. Args: beta (float) or numpy array beta_range (array-like): min and max beta of range, in that order ''' ``` ```Python a_div_r1(beta, year): ''' Get a/r_1(beta). Args: beta (float) year (int/str): year that parameterization was determined Returns: float: a/r_1 ''' ``` ```Python a_times_fk(beta, year): ''' Get a*f_k(beta). Args: beta (float) year (int/str): year that parameterization was determined Returns: float: a*f_k ''' ``` ```Python a_times_ms_2014(beta): ''' ''' ``` ```Python allton_type_ansatz(beta, c0, c2, d2): ''' ''' ``` ```Python fit_2014Eos_eqB2(beta, c0, c2, d2): ''' ''' ``` ```Python fit_tayloraLambda(beta, a, b, c): ''' ''' ``` ```Python ignoreBetaRange(): ''' Turn off the beta range warnings. ''' ``` ```Python r0_div_a(beta, year): ''' Get r0/a(beta). Args: beta (float) year (int/str): year that parameterization was determined Returns: float: r0/a ''' ``` ```Python r1_times_ms_2014(beta): ''' ''' ``` ```Python sqrtt0_div_a(beta): ''' Get sqrt(t0/a)(beta) Args: beta (float) Returns: float: sqrt(t0/a) ''' ``` ```Python wuppertal_type_ansatz(beta, c1, c2, c3, c4): ''' ''' ```