latqcdtools.physics.referenceScales ============= `_betaRangeWarn(beta, beta_range)` Many of these ansätze a(beta) have coefficients that were determined by performing a fit within a certain beta range. This warning flashes whenever you are using information outside of that range, where the ansatz is less likely be to reliable. Args: beta (float) or numpy array beta_range (array-like): min and max beta of range, in that order `a_div_r1(beta, year)` Get a/r_1(beta). Args: beta (float) year (int/str): year that parameterization was determined Returns: float: a/r_1 `a_times_fk(beta, year)` Get a*f_k(beta). Args: beta (float) year (int/str): year that parameterization was determined Returns: float: a*f_k `a_times_ms_2014(beta)` `allton_type_ansatz(beta, c0, c2, d2)` `fit_2014Eos_eqB2(beta, c0, c2, d2)` `fit_tayloraLambda(beta, a, b, c)` `ignoreBetaRange()` Turn off the beta range warnings. `r0_div_a(beta, year)` Get r0/a(beta). Args: beta (float) year (int/str): year that parameterization was determined Returns: float: r0/a `r1_times_ms_2014(beta)` `sqrtt0_div_a(beta)` Get sqrt(t0/a)(beta) Args: beta (float) Returns: float: sqrt(t0/a) `wuppertal_type_ansatz(beta, c1, c2, c3, c4)`